On chaos control and synchronization of the commensurate fractional order Liu system

نویسندگان

  • E. Ahmed
  • I. Podlubny
  • A. S. Elgazzar
  • N. Laskin
  • T. Chen
  • Y. Liu
  • Ahmad
  • R. El-Khazali
چکیده

In this work, we study chaos control and synchronization of the commensurate fractional order Liu system. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate fractional order systems are discussed. The existence and uniqueness of solutions for a class of commensurate fractional order Liu systems are investigated. We also obtain the necessary condition for the existence of chaotic attractors in the commensurate fractional order Liu system. The effect of fractional order on chaos control of this system is revealed by showing that the commensurate fractional order Liu system is controllable just in the fractional order case when using a specific choice of controllers. Moreover, we achieve chaos synchronization between the commensurate fractional order Liu system and its integer order counterpart via function projective synchronization. Numerical simulations are used to verify the analytical results. (C) 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption

In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...

متن کامل

Chaos Control and Synchronization of a Fractional-order Autonomous System

Liu, Liu, and Liu, in the paper “A novel three-dimensional autonomous chaos system, Chaos, Solitons and Fractals. 39 (2009) 1950-1958”, introduce a novel three-dimensional autonomous chaotic system. In this paper, the fractional-order case is considered. The lowest order for the system to remain chaotic is found via numerical simulation. Stability analysis of the fractional-order system is stud...

متن کامل

Design of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System

A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013